by Hannah Rouillard
They say scent is the sense with the strongest ties to memory. The smell of chlorine reminds me of swimming lessons at the YMCA. I remember the taste of pennies, my curls drying brittle on the car ride home and the number one rule when swimming: do NOT open your eyes underwater. But I did, of course, because that’s the only way a six-year-old can win Marco Polo.
I can recall with perfect clarity the blurry burn in my eyes after a swimming lesson, and blinking didn’t help. My eyes could not be quenched, my skin felt tight, my baby blonde hair took on a green hue in daylight and especially under the locker room fluorescents. But, my swim coach, my parents, and the janitor told me the pungent smell and stinging in my eyes was a powerful chemical working to keep the whole place clean and safe.
Chlorine’s Upbringing
Since its first use in 1905 to decontaminate Britain’s drinking water and halt the typhoid epidemic, chlorination has proven to be effective, otherwise we wouldn’t have been leaning on it so heavily for over a century. But chlorine, and all its potency, flooded into all kinds of water treatment outside potable water disinfection including irrigation water systems, community reservoirs and municipal wastewater. It is being used in broad strokes throughout water treatment and then haphazardly discharged into the environment. Historically, chlorine was the
smell of clean for most of the twentieth century. We’ve come a long way since then and learned how toxic it is to aquatic life, disrupting vital ecosystems, the livelihood of coastal industries, soil health and irrigation in agribusiness, and even communal surface waters.
When chlorine oxidizes organic matter, the reaction creates hazardous DBPs (disinfection by-products) including trihalomethanes (THMs) and haloacetic acids (HAAs) that can contaminate surface waters communities use in everyday life. These toxic by-products make the water unsafe to reintroduce to the environment. And while it boasts cost-effective disinfection, it often requires the extra, expensive step of dechlorination after treating water. The long-term effects of discharging dechlorinated compounds into the environment are unknown. As a result, the Environmental Protection Agency has implemented stringent restrictions on acceptable levels of chlorine residuals and disinfection by-products in municipal wastewater effluent waters. Less detrimental alternatives exist now and it’s time we take advantage of these new sustainable developments in water treatment. Enter: Peroxyacetic Acid.
Making the Switch
Several case studies have been conducted and consistently illustrate peroxyacetic acid’s efficacy in removing human health pathogens from water, neutralizing sulfur-based odor compounds without harmful residuals. Peroxyacetic acid is a disinfectant with chemical compounds utilized for years in operations across the pond but it’s only recently gained popularity in the United States. BioSafe Systems has spent over twenty years converting chlorine users to PAA advocates and continues to gain momentum in a positive and sustainable direction.
All commercially available PAA-based products contain an equilibrium mixture of hydrogen peroxide, water and acetic acid. When PAA decomposes in water, two oxidizing powerhouses, hydrogen peroxyl (HO₂) and hydroxyl (OH)
are formed and commence cell lysis. Disinfection occurs when the bacterial cell wall disintegrates after contact with PAA’s free radicals. These compounds remain stable in the water allowing them to target pathogens and bacteria without breaking apart or reverting to their precursor makeup.
Peracetic acid blends with wastewater the same way chlorine does, permitting a seamless transition from one chemical to another. PAA does not require extra equipment or expenses, making it an easy and economical choice for wastewater treatment operations. The effective disinfection of wastewater has been tried, tested and proven successful all over the United States from New Jersey to Kentucky, to California; the king of environmental regulatory statutes. PAA products are not hindered by turbidity or pH levels of wastewater making them more effective in turbulent, opaque water than UV light. UV needs water clarity upfront for the disinfecting light to penetrate, and in lab tests, visual clarity in water is noticeable moments after PAA is introduced to the sample. Ozone is another alternative to chlorine but requires much more complex accouterments and is a highly corrosive and reactive compound. When PAA is used to treat wastewater, its clean chemistry oxidizes on contact, then breaks down into completely non-toxic components.
Looking Towards the Future
Attention has been pulled from noxious chlorine and the water treatment industry is turning its focus towards peracetic acid. This clean chemistry is the advancement in scientific solutions water treatment has been waiting for. Utilizing PAA is saving businesses and municipalities time, money and stress when keeping up with compliance regulations. Successful, broad-spectrum disinfection in a short amount of time, easy implementation, absence of injurious by-products is what makes peracetic acid the most innovative and progressive option for wastewater treatment. BioSafe Systems is the American manufacturer of PAA propelling the sustainable current to carry the industry into the future.
Click Here to read the online publication of this article on Wastewater Digest.